Rabu, 04 November 2009

SISTEM KOORDINAT KARTESIUS , KOORDINAT 2 DIMENSI

Sistem koordinat Kartesius

Gambar 1 - Sistem koordinat Kartesius. Terdapat empat titik yang ditandai: (2,3) titik hijau, (-3,1) titik merah, (-1.5,-2.5) titik biru, dan (0,0), titik asal, yang berwarna ungu.

Dalam matematika, Sistem koordinat Kartesius digunakan untuk menentukan tiap titik dalam bidang dengan menggunakan dua bilangan yang biasa disebut koordinat x dan koordinat y dari titik tersebut.

Untuk mendefinisikan koordinat diperlukan dua garis berarah yang tegak lurus satu sama lain (sumbu x dan sumbu y), dan panjang unit, yang dibuat tanda-tanda pada kedua sumbu tersebut (lihat Gambar 1).

Sistem koordinat Kartesius dapat pula digunakan pada dimensi-dimensi yang lebih tinggi, seperti 3 dimensi, dengan menggunakan tiga sumbu (sumbu x, y, dan z).

Gambar 2 - Sistem koordinat Kartesius disertai lingkaran merah yang berjari-jari 2 yang berpusat pada titik asal (0,0). Persamaan lingkaran merah ini adalah x² + y² = 4.

Dengan menggunakan sistem koordinat Kartesius, bentuk-bentuk geometri seperti kurva dapat diekspresikan dengan persamaan aljabar. Sebagai contoh, lingkaran yang berjari-jari 2 dapat diekspresikan dengan persamaan x² + y² = 4 (lihat Gambar 2).

Istilah Kartesius digunakan untuk mengenang ahli matematika sekaligus filsuf dari Perancis Descartes, yang perannya besar dalam menggabungkan aljabar dan geometri (Cartesius adalah latinisasi untuk Descartes). Hasil kerjanya sangat berpengaruh dalam perkembangan geometri analitik, kalkulus, dan kartografi.

Ide dasar sistem ini dikembangkan pada tahun 1637 dalam dua tulisan karya Descartes. Pada bagian kedua dari tulisannya Discourse on Method, ia memperkenalkan ide baru untuk menggambarkan posisi titik atau obyek pada sebuah permukaan, dengan mengggunakan dua sumbu yang bertegak lurus antar satu dengan yang lain. Dalam tulisannya yang lain, La Géométrie, ia memperdalam konsep-konsep yang telah dikembangkannya.

Lihat koordinat (matematika) untuk sistem-sistem koordinat lain seperti sistem koordinat polar.

Sistem koordinat dua dimensi

Sistem koordinat Kartesius dalam dua dimensi umumnya didefinisikan dengan dua sumbu yang saling bertegak lurus antar satu dengan yang lain, yang keduanya terletak pada satu bidang (bidang xy). Sumbu horizontal diberi label x, dan sumbu vertikal diberi label y. Pada sistem koordinat tiga dimensi, ditambahkan sumbu yang lain yang sering diberi label z. Sumbu-sumbu tersebut ortogonal antar satu dengan yang lain. (Satu sumbu dengan sumbu lain bertegak lurus.)

Titik pertemuan antara kedua sumbu, titik asal, umumnya diberi label 0. Setiap sumbu juga mempunyai besaran panjang unit, dan setiap panjang tersebut diberi tanda dan ini membentuk semacam grid. Untuk mendeskripsikan suatu titik tertentu dalam sistem koordinat dua dimensi, nilai x ditulis (absis), lalu diikuti dengan nilai y (ordinat). Dengan demikian, format yang dipakai selalu (x,y) dan urutannya tidak dibalik-balik.

Gambar 3 - Keempat kuadran sistem koordinat Kartesius. Panah yang ada pada sumbu berarti panjang sumbunya tak terhingga pada arah panah tersebut.

Pilihan huruf-huruf didasari oleh konvensi, dimana huruf-huruf yang dekat akhir (seperti x dan y) digunakan untuk menandakan variabel dengan nilai yang tak diketahui, sedngakan huruf-huruf yang lebih dekat awal digunakan untuk menandakan nilai yang diketahui.

Sebagai contoh, pada Gambar 3, titik P berada pada koordinat (3,5).

Karena kedua sumbu bertegak lurus satu sama lain, bidang xy terbagi menjadi empat bagian yang disebut kuadran, yang pada Gambar 3 ditandai dengan angka I, II, III, dan IV. Menurut konvensi yang berlaku, keempat kuadran diurutkan mulai dari yang kanan atas (kuadran I), melingkar melawan arah jarum jam (lihat Gambar 3). Pada kuadran I, kedua koordinat (x dan y) bernilai positif. Pada kuadran II, koordinat x bernilai negatif dan koordinat y bernilai positif. Pada kuadran III, kedua koordinat bernilai negatif, dan pada kuadran IV, koordinat x bernilai positif dan y negatif (lihat tabel dibawah ini).

Kuadran nilai x nilai y
I > 0 > 0
II <> > 0
III <> <>
IV > 0 <>

HUKUM KEPLER I ,II ,DAN III

Hukum Pertama

Figure 2: Hukum Kepler pertama menempatkan Matahari di satu titik fokus edaran elips.
"Setiap planet bergerak dengan lintasan elips, matahari berada di salah satu fokusnya."

Pada zaman Kepler, klaim diatas adalah radikal. Kepercayaan yang berlaku (terutama yang berbasis teori epicycle) adalah bahwa orbit harus didasari lingkaran sempurna. Pengamatan ini sangat penting pada saat itu karena mendukung pandangan alam semesta menurut Kopernikus. Ini tidak berarti ia kehilangan relevansi dalam konteks yang lebih modern.

Meski secara teknis elips yang tidak sama dengan lingkaran, tetapi sebagian besar planet planet mengikuti orbit yang bereksentrisitas rendah, jadi secara kasar bisa dibilang mengaproximasi lingkaran. Jadi, kalau ditilik dari observasi jalan edaran planet, tidak jelas kalau orbit sebuah planet adalah elips. Namun, dari bukti perhitungan Kepler, orbit orbit itu adalah elips, yang juga memeperbolehkan benda-benda angkasa yang jauh dari matahari untuk memiliki orbit elips. Benda-benda angkasa ini tentunya sudah banyak dicatat oleh ahli astronomi, seperti komet dan asteroid. Sebagai contoh Pluto, yang diobservasi pada akhir tahun 1930, terutama terlambat diketemukan karena bentuk orbitnya yang sangat elipse dan kecil ukurannya.

Hukum Kedua

Figure 3: Illustrasi hukum Kepler kedua. Bahwa Planet bergerak lebih cepat didekat matahari dan lambat dijarak yang jauh. Sehingga jumlah area adalah sama pada jangka waktu tertentu.
"Luas daerah yang disapu pada selang waktu yang sama akan selalu sama."

Secara matematis:

\frac{d}{dt}(\frac{1}{2}r^2 \dot\theta) = 0

dimana \frac{1}{2}r^2 \dot\theta adalah "areal velocity".

Hukum Ketiga

Planet yang terletak jauh dari matahari memiliki perioda orbit yang lebih panjang dari planet yang dekat letaknya. Hukum Kepelr ketiga menjabarkan hal tersebut secara kuantitativ.


"Perioda kuadrat suatu planet berbanding dengan pangkat tiga jarak rata-ratanya dari matahari."

Secara matematis:

 {P^2} \propto  {a^3}

dimana P adalah period orbit planet dan a adalah axis semimajor orbitnya.

Konstant proporsionalitasnya adalah semua sama untuk planet yang mengedar matahari.

\frac{P_{\rm planet}^2}{a_{\rm planet}^3} = \frac{P_{\rm earth}^2}{a_{\rm earth}^3}.

HUKUM GERAKAN PLANET KEPLER

Hukum Gerakan Planet Kepler

Figure 1: Illustration of Kepler's three laws with two planetary orbits. (1) The orbits are ellipses, with focal points ƒ1 and ƒ2 for the first planet and ƒ1 and &>. (2) The two shaded sectors A1 and A2 have the same surface area and the time for planet 1 to cover segment A1 is equal to the time to cover segment A2. (3) The total orbit times for planet 1 and planet 2 have a ratio a13/2 : a23/2.


Di dalam astronomi, tiga Hukum Gerakan Planet Kepler adalah


  • Setiap planet bergerak dengan lintasan elips, matahari berada di salah satu fokusnya.
  • Luas daerah yang disapu pada selang waktu yang sama akan selalu sama.
  • Perioda kuadrat suatu planet berbanding dengan pangkat tiga jarak rata-ratanya dari matahari.


Ketiga hukum diatas ditemukan oleh ahli matematika and astronomi jerman Johannes Kepler (1571–1630), yang menjelaskan gerakan planet di dalam tata surya. Hukum diatas menjabarkan gerakan dua benda yang saling mengorbit.

Karya Kepler didasari oleh data observasi Tycho Brahe, yang diterbitkannya sebagai 'Rudolphine tables'. Sekitar tahun 1605 Kepler menyimpulkan bahwa data posisi planet hasil observasi Brahe mengikuti rumusan matematika cukup sederhana yang tercantum diatas.

Hukum Kepler mempertanyakan kebenaran astronomi dan fisika warisan zaman Aristoteles dan Ptolemaeus. Ungkapan Kepler bahwa Bumi beredear sekeliling, berbentuk elips dan bukannya epicycle, dan membuktikan bahwa kecepatan gerak planet bervariasi, merubah astronomi dan fisika. Hampir seabad kemudian Isaac Newton mendeduksi Hukum Kepler dari rumusan hukum karyanya, hukum gerak dan hukum gravitasi Newton, dengan menggunakan Euclidean geometry klasik.

Pada era modern, hukum kepler digunakan untuk aproximasi orbit satelit dan benda-benda yang mengorbit matahari. Yang semuanya belum ditemukan pada saat Kepler hidup. (contoh: planet luar dan asteroid) Hukum ini kemudian diaplikasikan untuk semua benda kecil yang mengorbit benda lain yang jauh lebih besar, walaupun beberapa aspek seperti gesekan atmosfer (contoh: gerakan di orbit rendah), atau relativitas (contoh: prosesi preihelion merkurius), dan keberadaan benda lainnya dapat membuat hasil hitungan tidak akurat dalam berbagai keperluan.

HUKUM NEWTON I , II DAN III

HUKUM NEWTON I

HUKUM NEWTON I disebut juga hukum kelembaman (Inersia).
Sifat lembam benda adalah sifat mempertahankan keadaannya, yaitu keadaan tetap diam atau keaduan tetap bergerak beraturan.

DEFINISI HUKUM NEWTON I :
Setiap benda akan tetap bergerak lurus beraturan atau tetap dalam keadaan diam jika tidak ada resultan
gaya (F) yang bekerja pada benda itu, jadi:

S F = 0 a = 0 karena v=0 (diam), atau v= konstan (GLB)

HUKUM NEWTON II

a = F/m

S F = m a

S F = jumlah gaya-gaya pada benda
m = massa benda
a = percepatan benda

Rumus ini sangat penting karena pada hampir semna persoalan gerak {mendatar/translasi (GLBB) dan melingkar (GMB/GMBB)} yang berhubungan dengan percepatan den massa benda dapat diselesaikan dengan rumus tersebut.

HUKUM NEWTON III

DEFINISI HUKUM NEWTON III:

Jika suatu benda mengerjakan gaya pada benda kedua maka benda kedua tersebut mengerjakan juga gaya pada benda pertama, yang besar gayanya = gaya yang diterima tetapi berlawanan arah. Perlu diperhatikan bahwa kedua gaya tersebut harus bekerja pada dua benda yang berlainan.

F aksi = - F reaksi

N dan T1 = aksi reaksi (bekerja pada dua benda)

T2 dan W = bukan aksi reaksi (bekerja pada tiga benda)

gaya normal

GAYA NORMAL

Ketika kita meletakan sebuah kotak di atas meja, berat kotak tersebut menekan meja ke bawah dan sebaliknya meja membalas dengan memberikan gaya ke atas (lihat gambar di bawah). Gaya yang diberikan oleh meja bisa disebut gaya kontak, karena gaya tersebut terjadi karena adanya sentuhan antara kotak dan meja. Sebuah gaya kontak yang tegak lurus terhadap permukaan kontak disebut Gaya Normal (normal berarti tegak lurus), dan mempunyai Lambang FN atau bisa ditulis N.

Kedua gaya yang ditunjukkan pada gambar diatas bekerja pada kotak sehingga kotak tetap diam. Selisih kedua gaya tersebut (gaya total) pasti nol, sehinga kotak tersebut diam/tidak jatuh ke tanah. FG atau w dan N pasti memiliki besar yang sama dan memiliki arah yang berlawanan, sehingga gaya total atau selisih kedua gaya tersebut nol. Gaya-gaya tersebut bukan gaya aksi reaksi yang dijelaskan pada Hukum III Newton. Ingat bahwa gaya aksi reaksi bekerja pada benda yang berbeda, sedangkan kedua gaya di atas (Gaya berat dan Gaya Normal) bekerja pada benda yang sama, yakni kotak. Perhatikan gambar di atas secara saksama. Gaya berat benda yang menekan meja digambarkan pada titik pusat kotak alias berada di tengah-tengah kotak. Sedangkan Gaya Normal digambarkan pada permukaan sentuh antara kotak dan meja.

Lalu apa gaya reaksinya ? gaya ke atas yang diberikan oleh meja terhadap kotak adalah N, disebut gaya aksi. Gaya reaksi diberikan oleh kotak kepada meja, yakni N’, sebagaimana diperlihatkan pada gambar di bawah. Perhatikan baik-baik posisi tanda panah pada gambar. Tanda panah yang mewakili N’ digambarkan pada meja, bukan pada kotak. Panjang tanda panah sama, hal ini menunjukkan bahwa besarnya gaya sama, hanya berlawanan arah (aksi = – reaksi). Mengenai aksi-reaksi selengkapnya dipelajari pada Pokok Bahasan Hukum III Newton.

Gaya Normal (N) bekerja pada bidang sentuh antara dua benda yang saling bersentuhan dan arahnya selalu tegak lurus pada bidang sentuh. Beberapa contoh arah Gaya Normal terhadap gaya sentuh ditunjukkan pada gambar di bawah.

Contoh Soal 1 :

Sebuah buku diletakkan di atas sebuah meja yang permukaannya datar sebagaimana ditunjukkan pada gambar di bawah. Apabila massa buku 1 kg, berapakah Gaya Normal (N) yang diberikan meja terhadap buku ? anggap saja gravitasi 10 m/s2

Soal ini ma gampang ;)

Dikerjain sendiri ya ? masa ga bisa….. tinggal masuk’n rumus aja.

Contoh Soal 2 :

Sebuah balok diletakkan di atas sebuah papan yang diletakkan miring sebagaimana ditunjukkan pada gambar di bawah. Apabila massa balok 5 kg dan sudut yang dibentuk antara papan dengan lantai adalah 45o, berapakah Gaya Normal (N) yang diberikan meja terhadap buku ? anggap saja gravitasi 10 m/s2

Soal kaya gini ma gampang. Kerjain sendiri ya ? ;)

Panduan Jawaban :

baGaImaNa MeNgGeRJakAnnYa-kaH ?

Karena balok terletak pada bidang miring maka kita tidak bisa menghitung N seperti contoh soal 1. cermati gambar di bawah.


gaya gravitasi

Gaya Gravitasi PDF Print E-mail

Gravitasi adalah gaya tarik-menarik yang terjadi antara semua partikel yang mempunyai massa di alam semesta. Fisika modern mendeskripsikan gravitasi menggunakan Teori Relativitas Umum dari Einstein, namun hukum gravitasi universal Newton yang lebih sederhana merupakan hampiran yang cukup akurat dalam kebanyakan kasus.

Bumi yang memiliki massa yang sangat besar menghasilkan gaya gravitasi yang sangat besar untuk menarik benda-benda disekitarnya, termasuk makhluk hidup, dan benda benda yang ada di bumi. Gaya gravitasi ini juga menarik benda-benda yang ada diluar angkasa, seperti bulan, meteor, dan benda angkasa laiinnya, termasuk satelite buatan manusia.

Hukum gravitasi universal Newton dirumuskan sebagai berikut:

Setiap massa titik menarik semua massa titik lainnya dengan gaya segaris dengan garis yang menghubungkan kedua titik. Besar gaya tersebut berbanding lurus dengan perkalian kedua massa tersebut dan berbanding terbalik dengan kuadrat jarak antara kedua massa titik tersebut.
F = G \frac{m_1 m_2}{r^2}
F adalah besar dari gaya gravitasi antara kedua massa titik tersebut diukur dalam satuan Newton (N)
G adalah konstanta gravitasi, besarnya sama dengan 6,67 × 10−11 N m2 kg−2.
m1 adalah besar massa titik pertama, satuannya dalam kilogram (Kg)
m2 adalah besar massa titik kedua, satuannya dalam kilogram (Kg)
r adalah jarak antara kedua massa titik, satuannya dalam meter (M)

gaya gesekan,

Gaya gesek

Gaya gesek adalah gaya yang berarah melawan gerak benda atau arah kecenderungan benda akan bergerak. Gaya gesek muncul apabila dua buah benda bersentuhan. Benda-benda yang dimaksud di sini tidak harus berbentuk padat, melainkan dapat pula berbentuk cair, ataupun gas. Gaya gesek antara dua buah benda padat misalnya adalah gaya gesek statis dan kinetis, sedangkan gaya antara benda padat dan cairan serta gas adalah gaya Stokes.

Secara umum gaya gesek dapat dituliskan sebagai suatu ekspansi deret, yaitu

f = - \mu_{s,k} N \frac{\vec{v}}{|\vec{v}|} - b v \frac{\vec{v}}{|\vec{v}|} - c v^2 \frac{\vec{v}}{|\vec{v}|} - ..,

di mana suku pertama adalah gaya gesek yang dikenal sebagai gaya gesek statis dan kinetis, sedangkan suku kedua dan ketiga adalah gaya gesek pada benda dalam fluida.

Gaya gesek dapat merugikan atau bermanfaat. Panas pada poros yang berputar, engsel pintu yang berderit, dan sepatu yang aus adalah contoh kerugian yang disebabkan oleh gaya gesek. Akan tetapi tanpa gaya gesek manusia tidak dapat berpindah tempat karena gerakan kakinya hanya akan menggelincir di atas lantai. Tanpa adanya gaya gesek antara ban mobil dengan jalan, mobil hanya akan slip dan tidak membuat mobil dapat bergerak. Tanpa adanya gaya gesek juga tidak dapat tercipta parasut.

Asal gaya gesek

Gaya gesek merupakan akumulasi interaksi mikro antar kedua permukaan yang saling bersentuhan. Gaya-gaya yang bekerja antara lain adalah gaya elektrostatik pada masing-masing permukaan. Dulu diyakini bahwa permukaan yang halus akan menyebabkan gaya gesek (atau tepatnya koefisien gaya gesek) menjadi lebih kecil nilainya dibandingkan dengan permukaan yang kasar, akan tetapi dewasa ini tidak lagi demikian. Konstruksi mikro (nano tepatnya) pada permukaan benda dapat menyebabkan gesekan menjadi minimum, bahkan cairan tidak lagi dapat membasahinya (efek lotus).

Jenis-jenis gaya gesek

Terdapat dua jenis gaya gesek antara dua buah benda yang padat saling bergerak lurus, yaitu gaya gesek statis dan gaya gesek kinetis, yang dibedakan antara titik-titik sentuh antara kedua permukaan yang tetap atau saling berganti (menggeser). Untuk benda yang dapat menggelinding, terdapat pula jenis gaya gesek lain yang disebut gaya gesek menggelinding (rolling friction). Untuk benda yang berputar tegak lurus pada permukaan atau ber-spin, terdapat pula gaya gesek spin (spin friction). Gaya gesek antara benda padat dan fluida disebut sebagai gaya Stokes atau gaya viskos (viscous force).

Gerak melingkar,besaran gerak melingkar,turunan dan integral,GMB,GMBB,PERSAMAAN PARAMETIK,kec tangensial dan kec sudut,GBB

Gerak melingkar


Langsung ke: navigasi, cari
Gerak melingkar.

Gerak Melingkar adalah gerak suatu benda yang membentuk lintasan berupa lingkaran mengelilingi suatu titik tetap. Agar suatu benda dapat bergerak melingkar ia membutuhkan adanya gaya yang selalu membelokkan-nya menuju pusat lintasan lingkaran. Gaya ini dinamakan gaya sentripetal. Suatu gerak melingkar beraturan dapat dikatakan sebagai suatu gerak dipercepat beraturan, mengingat perlu adanya suatu percepatan yang besarnya tetap dengan arah yang berubah, yang selalu mengubah arah gerak benda agar menempuh lintasan berbentuk lingkaran [1].

Besaran gerak melingkar

Besaran-besaran yang mendeskripsikan suatu gerak melingkar adalah \theta\!, \omega\! dan \alpha\! atau berturur-turut berarti sudut, kecepatan sudut dan percepatan sudut. Besaran-besaran ini bila dianalogikan dengan gerak linier setara dengan posisi, kecepatan dan percepatan atau dilambangkan berturut-turut dengan r\!, v\! dan a\!.

Besaran gerak lurus dan melingkar
Gerak lurus Gerak melingkar
Besaran Satuan (SI) Besaran Satuan (SI)
poisisi r\! m sudut \theta\! rad
kecepatan v\! m/s kecepatan sudut \omega\! rad/s
percepatan a\! m/s2 percepatan sudut \alpha\! rad/s2
- - perioda T\! s
- - radius R\! m

Turunan dan integral

Seperti halnya kembarannya dalam gerak linier, besaran-besaran gerak melingkar pun memiliki hubungan satu sama lain melalui proses integrasi dan diferensiasi.

\int \omega\ dt = \theta \ \ \leftrightarrow\ \ \omega = \frac{d\theta}{dt}
\int \alpha\ dt = \omega \ \ \leftrightarrow\ \ \alpha = \frac{d\omega}{dt}
\int \int \alpha\ dt^2 = \theta \ \ \leftrightarrow\ \ \alpha = \frac{d^2\theta}{dt^2}

Hubungan antar besaran sudut dan tangensial

Antara besaran gerak linier dan melingkar terdapat suatu hubungan melalui R\! khusus untuk komponen tangensial, yaitu

\theta = \frac{r_T}{R}\ \ , \ \ \omega = \frac{v_T}{R}\ \ , \ \ \alpha = \frac{a_T}{R}

Perhatikan bahwa di sini digunakan r_T\! yang didefinisikan sebagai jarak yang ditempuh atau tali busur yang telah dilewati dalam suatu selang waktu dan bukan hanya posisi pada suatu saat, yaitu

r_T \approx |\overrightarrow{r}(t+\Delta t)-\overrightarrow{r}(t)|\!

untuk suatu selang waktu kecil atau sudut yang sempit.

Jenis gerak melingkar

Gerak melingkar dapat dibedakan menjadi dua jenis, atas keseragaman kecepatan sudutnya \omega\!, yaitu:

  • gerak melingkar beraturan, dan
  • gerak melingkar berubah beraturan.

Gerak melingkar beraturan

Gerak Melingkar Beraturan (GMB) adalah gerak melingkar dengan besar kecepatan sudut \omega\! tetap. Besar Kecepatan sudut diperolah dengan membagi kecepatan tangensial v_T\! dengan jari-jari lintasan R\!

\omega = \frac {v_T} R

Arah kecepatan linier v\! dalam GMB selalu menyinggung lintasan, yang berarti arahnya sama dengan arah kecepatan tangensial v_T\!. Tetapnya nilai kecepatan v_T\! akibat konsekuensi dar tetapnya nilai \omega\!. Selain itu terdapat pula percepatan radial a_R\! yang besarnya tetap dengan arah yang berubah. Percepatan ini disebut sebagai percepatan sentripetal, di mana arahnya selalu menunjuk ke pusat lingkaran.

a_R = \frac {v^2} R = \frac {v_T^2} R

Bila T\! adalah waktu yang dibutuhkan untuk menyelesaikan satu putaran penuh dalam lintasan lingkaran \theta = 2\pi R\!, maka dapat pula dituliskan

v_T = \frac {2\pi R} T \!

Kinematika gerak melingkar beraturan adalah

\theta(t) = \theta_0 + \omega\ t

dengan \theta(t)\! adalah sudut yang dilalui pada suatu saat t\!, \theta_0\! adalah sudut mula-mula dan \omega\! adalah kecepatan sudut (yang tetap nilainya).

Gerak melingkar berubah beraturan

Gerak Melingkar Berubah Beraturan (GMBB) adalah gerak melingkar dengan percepatan sudut \alpha\! tetap. Dalam gerak ini terdapat percepatan tangensial a_T\! (yang dalam hal ini sama dengan percepatan linier) yang menyinggung lintasan lingkaran (berhimpit dengan arah kecepatan tangensial v_T\!).

\alpha = \frac {a_T} R

Kinematika GMBB adalah

\omega(t) = \omega_0 + \alpha\ t \!
\theta(t) = \theta_0 + \omega_0\ t  + \frac12 \alpha\ t^2 \!
\omega^2(t) = \omega_0^2 + 2 \alpha\ (\theta(t) - \theta_0) \!

dengan \alpha\! adalah percepatan sudut yang bernilai tetap dan \omega_0\! adalah kecepatan sudut mula-mula.

Persamaan parametrik

Gerak melingkar dapat pula dinyatakan dalam persamaan parametrik dengan terlebih dahulu mendefinisikan:

  • titik awal gerakan dilakukan (x_0,y_0)\!
  • kecepatan sudut putaran \omega\! (yang berarti suatu GMB)
  • pusat lingkaran (x_c,y_c)\!

untuk kemudian dibuat persamaannya [2].

Hal pertama yang harus dilakukan adalah menghitung jari-jari lintasan R\! yang diperoleh melalui:

R = \sqrt{(x_0 - x_c)^2 + (y_0 - y_c)^2} \!

Setelah diperoleh nilai jari-jari lintasan, persamaan dapat segera dituliskan, yaitu

x(t) = x_c + R cos(\omega t + \phi_x) \!
y(t) = y_c + R sin(\omega t + \phi_y) \!

dengan dua konstanta \phi_x \! dan \phi_y \! yang masih harus ditentukan nilainya. Dengan persyaratan sebelumnya, yaitu diketahuinya nilai (x_0,y_0)\!, maka dapat ditentukan nilai \phi_x \! dan \phi_y \!:

\phi_x = \arccos \left( \frac{x_0 - x_c}{R} \right)\!
\phi_y = \arcsin \left( \frac{y_0 - y_c}{R} \right)\!

Perlu diketahui bahwa sebenarnya

\phi_x = \phi_y \!

karena merupakan sudut awal gerak melingkar.

Hubungan antar besaran linier dan angular

Dengan menggunakan persamaan parametrik, telah dibatasi bahwa besaran linier yang digunakan hanyalah besaran tangensial atau hanya komponen vektor pada arah angular, yang berarti tidak ada komponen vektor dalam arah radial. Dengan batasan ini hubungan antara besaran linier (tangensial) dan angular dapat dengan mudah diturunkan.

Kecepatan tangensial dan kecepatan sudut

Kecepatan linier total dapat diperoleh melalui

v  = \sqrt{v_x^2 + v_y^2}

dan karena batasan implementasi persamaan parametrik pada gerak melingkar, maka

v_T  = v = \sqrt{v_x^2 + v_y^2}

dengan

v_x  = \dot{x} = \frac{dx}{dt}
v_y  = \dot{y} = \frac{dy}{dt}

diperoleh

v_x  = -\omega R \sin(\omega t + \phi_x) \!
v_y  = \omega R \cos(\omega t + \phi_x) \!

sehingga

v_T  = \sqrt{(-\omega)^2 R^2 \sin^2(\omega t + \phi_x) + \omega^2 R^2 \cos^2(\omega t + \phi_x)}\!
v_T  = \omega R \sqrt{\sin^2(\omega t + \phi_x) + \cos^2(\omega t + \phi_x)}\!
v_T  = \omega R\!

Percepatan tangensial dan kecepatan sudut

Dengan cara yang sama dengan sebelumnya, percepatan linier total dapat diperoleh melalui

a  = \sqrt{a_x^2 + a_y^2}

dan karena batasan implementasi persamaan parametrik pada gerak melingkar, maka

a_T  = a = \sqrt{a_x^2 + a_y^2}

dengan

a_x  = \ddot{x} = \frac{d^2x}{dt^2}
a_y  = \ddot{y} = \frac{d^2y}{dt^2}

diperoleh

a_x  = -\omega^2 R \cos(\omega t + \phi_x) \!
a_y  = -\omega^2 R \sin(\omega t + \phi_x) \!

sehingga

a_T  = \sqrt{(-\omega)^4 R^2 \cos^2(\omega t + \phi_x) + \omega^4 R^2 \sin^2(\omega t + \phi_x)}\!
a_T  = \omega^2 R \sqrt{\cos^2(\omega t + \phi_x) + \sin^2(\omega t + \phi_x)}\!
a_T  = \omega^2 R\!


Kecepatan sudut tidak tetap

Persamaan parametric dapat pula digunakan apabila gerak melingkar merupakan GMBB, atau bukan lagi GMB dengan terdapatnya kecepatan sudut yang berubah beraturan (atau adanya percepatan sudut). Langkah-langkah yang sama dapat dilakukan, akan tetapi perlu diingat bahwa

\omega \rightarrow \omega(t) = \int \alpha dt = \omega_0 + \alpha t \!

dengan \alpha\! percepatan sudut dan \omega_0\! kecepatan sudut mula-mula. Penurunan GMBB ini akan menjadi sedikit lebih rumit dibandingkan pada kasus GMB di atas.

Persamaan parametrik di atas, dapat dituliskan dalam bentuk yang lebih umum, yaitu:

x(t) = x_c + R \cos \theta \!
y(t) = y_c + R \sin \theta \!

di mana \theta = \theta(t) \! adalah sudut yang dilampaui dalam suatu kurun waktu. Seperti telah disebutkan di atas mengenai hubungan antara \theta \!, \omega \! dan \alpha \! melalui proses integrasi dan diferensiasi, maka dalam kasus GMBB hubungan-hubungan tersebut mutlak diperlukan.

Kecepatan sudut

Dengan menggunakan aturan rantai dalam melakukan diferensiasi posisi dari persamaan parametrik terhadap waktu diperoleh

v_x(t) = - R \sin \theta\ \frac{d\theta}{dt} =  - \omega(t) R \sin \theta \!
v_y(t) = R \cos \theta \ \frac{d\theta}{dt} = \omega(t) R \cos \theta \!

dengan

\frac{d\theta}{dt} = \omega(t) = \omega_0 + \alpha\ t \!

Dapat dibuktikan bahwa

v(t) = v_T(t) = \sqrt{v_x^2(t) + v_y^2(t)} = \omega(t) R \!

sama dengan kasus pada GMB.

[sunting] Percepatan total

Diferensiasi lebih lanjut terhadap waktu pada kecepatan linier memberikan

a_x(t) = - R \cos \theta \ \left( \frac{d\theta}{dt} \right)^2  - R \sin \theta \frac{d^2\theta}{dt^2} \!
a_x(t) = - R \sin \theta \ \left( \frac{d\theta}{dt} \right)^2  + R \cos\theta \frac{d^2\theta}{dt^2} \!

yang dapat disederhanakan menjadi

a_x(t) = - \omega^2 R \cos \theta  - \alpha R \sin \theta \!
a_x(t) = - \omega^2 R \sin \theta  + \alpha R \cos \theta \!

Selanjutnya

a^2(t) = a_x^2(t) + a_y^2(t) = R^2\left(\omega^4(t) + \alpha^2 \right) \!

yang umumnya dituliskan [3]

a^2(t) = a_R^2(t) + a_T^2(t) \!

dengan

a_T = \alpha R \!

yang merupakan percepatan sudut, dan

a_R = \omega^2 R = a_S \!

yang merupakan percepatan sentripetal. Suku sentripetal ini muncul karena benda harus dibelokkan atau kecepatannya harus diubah sehingga bergerak mengikuti lintasan lingkaran.

Gerak berubah beraturan

Gerak melingkar dapat dipandang sebagai gerak berubah beraturan. Bedakan dengan gerak lurus berubah beraturan (GLBB). Konsep kecepatan yang berubah kadang hanya dipahami dalam perubahan besarnya, dalam gerak melingkar beraturan (GMB) besarnya kecepatan adalah tetap, akan tetapi arahnya yang berubah dengan beraturan, bandingkan dengan GLBB yang arahnya tetap akan tetapi besarnya kecepatan yang berubah beraturan.

Gerak berubah beraturan
Kecepatan GLBB GMB
Besar berubah tetap
Arah tetap berubah